

Alternative Communication Networking in Polar Regions

Abdul Jabbar Mohammad

Nandish Chalishazar Victor Frost Glenn Prescott

International Symposium on Advanced Radio Technologies, Colorado 2004

Information and Telecommunication Technology Center Department of Electrical Engineering and Computer Science University of Kansas

Lawrence, KS

Sponsors: National Science Foundation (grant #OPP-0122520), the National Aeronautics and Space Administration (grants #NAG5-12659 and NAG5-12980), the Kansas Technology Enterprise Corporation, and the University of Kansas

Presentation Outline

- Motivation
- Introduction
- Multi-Channel Iridium System
- Long range WI-FI System (work done by Nandish Chalishazar)
- Field Experiments and Results
- Conclusions

Motivation

 Polar Radar for Ice Sheet Measurements (PRISM): – developing intelligent remote sensing technology to determine thickness of ice sheets and ice-bedrock interface in Greenland and Antarctica.
 The system comprises of a sensor web deployed over intelligent rovers.

Inter-rover communication

- Reliable, high bandwidth communications required between nodes separated by 8 Km on the ice
- Data communication between the field camp and University of Kansas
 - Data telemetry and access to University and web resources from field
 - Public outreach
- Generic data communication for Remote field research
 - Mainstream communication system for polar science expeditions, field camps in Arctic/Antarctic and other research purposes
 - Government and security use

Introduction – Satellite Communication

- Polar regions do not have conventional communication facilities and are serviced by most of the major broadband satellite systems (like Inmarsat, Intelsat, Globalstar).
- NASA satellites like ATS3, LES9, GOES, TDRS 1, and MARISAT2 provide broadband access to Polar Regions
- Geo-synchronous, they have a limited visibility window at Poles - typically 10-13 hrs/day.
- High satellite altitude and low elevation angles (1-20) result in extremely large field equipment.
- May not be readily available

20 m diameter Marisat/GOES antenna at South Pole Source: http://cfa-www.harvard.edu/~aas/SPUC/02/presentations/SATCOM.ppt

Iridium

- The only commercial satellite system with true pole-to-pole coverage
- 66 low earth orbiting (LEO) satellites
- Onboard satellite switching technology
- Minimum elevation angle of 8.2°
- Average satellite view time ~ 9-10 minutes
- Access scheme is a combination of FDMA and TDMA
- Problem: Since it provides a low bandwidth of 2.4 Kbps, it is not practical to be used as a main stream/ life-line communication system
- **Solution:** Inverse Multiplexing Combine multiple satellite links using multi-link point to point protocol (MLPPP) to obtain a single logical channel of aggregate bandwidth

Multi-channel Iridium System - Design

Multi-channel Iridium System – Protocol Stack

	Remote System		Local System
	Application		Application
	HTTP, FTP, SSH		HTTP, FTP, SSH
	TCP		TCP
_	IP		IP
	PPP/MLPPP	point-to-point satellite links	PPP/MLPPP
	Physical Modems		Physical Modems

Domoto System

Local System

Multi-channel Iridium System – Network Architecture

WI-FI system

- Range of the commercial off-the-shelf systems is few hundred meters not enough
- Increase the range of the 802.11b link up to 8 Km amplification of the signal is required to overcome the propagation losses
- The two ray propagation model predicts forth power loss with distance over ice
- Also the received signal strength increases by 6 dB on doubling the height of the antenna
- Combination of high gain antenna and RF amplifier can help to achieve the required signal strength
- 9-dBi vertical collinear antenna horizontal beam width of 360° and vertical beam width of 7°.
- 1-Watt bidirectional amplifier with AGC and Tx of 29.3 dBm

WI-FI System

Basic LAN

- Central Access point with high gain antenna and bidirectional amplifier
- End users use off-the-shelf 802.11b wireless cards to access the Iridium based Internet
- Range ~ 1 Km

Extended LAN

- Both ends of the communication antennas need amplifiers and high gain antennas connected to the wireless cards
- Range ~ 8 Km
- Bandwidth decreases with distance

Field Experiments – Iridium System

•Field experiments conducted at NGRIP, Greenland (75° 06' N, 42° 20' W) in Summer 2003

4-channel system setup

Iridium Results - Delay and Loss Measurement

- Ping tests between the two machines at the end of the of satellite link
- Transmission + Propagation delay = 524msec
- Test results show an average RTT delay of 1.8 sec,
- Random delay variation and high mean deviation
- Causes may include inter-satellite switching, processing at the gateway, distance between the user and satellite and distance between the satellites (ISL)

		% Loss	RTT (sec)						
Packets sent	Packets received		Avg	Min	Max	Mdev			
50	50	0	1.835	1.347	1.347 4.127				
100	100	0	1.785	1.448	4.056	0.573			
100	100	0	2.067	1.313	6.255	1.272			
200	200	0	1.815	1.333	6.228	0.809			

Iridium Results – Throughput

- Tools used TTCP, IPERF
- Throughput varies to some extend due to RTT variation
- Efficiency > 90%

Effective throughputs during large file transfers

File Size (MB)	Upload Time (min)	Throughput (bits/sec)				
0.75	11	9091				
1.5	28	7143				
1.6	23	9275				
2.3	45	6815				
2.5	35	9524				
3.2	60	7111				

Iridium Results - Reliability: 24 hr test

Time interval between call drops	146	106	114	50	25	84	89	8	7	7	17	11	137	618
(minutes)														

Field Experiments – WI-FI System

Base Station

WI-FI system Results - Basic WLAN

Infrastructure LAN

- Wireless clients with in the camp access the Iridium system
- Variation of SNR with distance
- •Internet throughput does not vary with SNR

Variation of SNR and throughput in basic (infrastructure) WLAN

WI-FI system Results – Extended LAN

Variation of RSS with distance
Base antenna height=3m and mobile antenna height=1.4m GPS error =10m

Variation of RSS with distance
Base antenna height=3m and mobile antenna height=1.4m GPS error =10m

- Measurements are carried out using a fixed base station and a mobile client (peer-to-peer)
- Received signal strength variation matches very well with the theoretical two-ray propagation model
- The effects of using a multi-element antenna is accounted for in the theoretical prediction

WI-FI system Results – Extended LAN

Variation of signal to noise ratio along track 1 for equal antenna heights of 1.4, 2, 3 and 5 at the base station and mobile vehicle

BE 40 30 20 1000 2000 3000 4000 5000 6000 7000 8000 Distance in meters

Corresponding TCP throughput measured every 0.5 Km

- ■Throughput varies from 4.9 0.2 Mbps depending on the SNR
- •Throughput does not decrease monotonically with packet errors inherent in a 802.11b link.

Applications - Wireless Internet

- Data telemetry
- Wireless Internet/email access
- Download critical software on field (up to 7.2 MB)
- Obtain expert help while on the field
- Collaborate field experiments with mainland research facilities
- Public outreach video clips, daily reports, etc.

 General camp purpose: sending drawings to order spares for a broken caterpillar, excel spreadsheet for food order, general press releases downloading weather reports for planning C-130 landings

Conclusions

- Multi-channel Iridium communication could be used to reliable provide data and Internet access to Polar Regions.
- This system is easily scalable, lightweight, readily available and has round the clock, poleto-pole coverage.
- The developed link management software ensures fully autonomous and reliable operation
- The Iridium system can be integrated with reliable long range 802.11b wireless to provide connectivity for distances up to 8 Km
- The validity of two-ray propagation model over flat ice sheets in Polar Regions is proved
- The system provided for the first time, wireless data and Internet access to NGRIP camp in Greenland.

Questions? Comments?

THANK YOU

jabbar@ittc.ku.edu